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Abstract— In the last three decades there have been a number 

of efficient multi-objective optimization algorithms capable of 

solving real-world problems. However, due to the complexity of 

most real-world problems (high-dimensionality of problems, 

computationally expensive, and unknown function properties) 

researchers and decision-makers are increasingly facing the 

challenge of selecting an optimization algorithm capable of solving 

their hard problems. In this paper, we propose a simple yet 

efficient hybridization of multi- and many-objective optimization 

algorithms framework called hybrid many-objective optimization 

algorithm using fusion of solutions obtained by several many-

objective algorithms (fusion) to gain the combined benefits of 

several algorithms and reducing the challenge of choosing one 

optimization algorithm to solve complex problems. During the 

optimization process, the Fusion framework (1) executes all 

optimization algorithms in parallel, (2) it combines solutions of 

these algorithms and extracts well-distributed solutions using 

predefined structured reference points or user-defined reference 

points, and (3) adaptively selects best-performing algorithm to 

tackle the problem at different stages of the search process. A case 

study of the fusion framework by considering GDE3, SMPSO, and 

SPEA2 as multi-objective optimization algorithms is presented. 

Experimental results on five unconstrained and four constrained 

benchmark test problems with three to ten objectives show that 

the Fusion framework significantly outperforms all algorithms 

involved in the hybridization process as well as the  NSGA-III 

algorithm in terms of diversity and convergence of obtained 

solutions. Furthermore, the proposed framework is consistently 

able to find accurate solutions for all test problems which can be 

interpreted as its high robustness characteristic.  

Keywords— Hybrid optimization; Algorithms fusion; GDE3, 

SPEA2, SMPSO; NSGA-III, Many-objective optimization; 

Reference-point-based optimization, Evolutionary computation. 

I. INTRODUCTION 

There have been numerous multi-objective algorithms that 
attempt to solve complex problems in the past thirty years. 
Nonetheless, researchers and decision-makers are increasingly 
faced with the difficulty of choosing an appropriate algorithm 
capable of solving their problem in an effective manner due to a 

well-established “No-Free-Lunch” theorem [1]. This theorem 
stipulates that an algorithm that may have proven to give good 
performance on a particular class of problems may not provide 
the same level of performance on other classes of problems. 
Consequently, researchers shifted their focus instead to 
developing powerful algorithms that are more problem-specific 
or instance-specific. This task can be accomplished via the 
hybridization of optimization algorithms where new algorithms 
are developed by combining two optimization algorithms. 
Another way to accomplish this is by combining mathematical 
methods with an evolutionary optimization algorithm. Yet, 
another method incorporates evolutionary operators (selection, 
mutation, and crossover) into non-evolutionary optimization 
algorithms [2]. The expectation here is that hybridization 
combines the desirable properties of different approaches such 
that the hybrid algorithm exhibits improved exploration and 
exploitation capabilities. 

For instance, a hybrid multi-objective evolutionary 
algorithm called HMOEA was proposed by Tan et a1. [3]. They 
utilized specialized genetic operators along with variable-length 
representation and a local search heuristic to find the Pareto 
optimal routing solutions for the truck and trailer vehicle routing 
problem (TTVRP). Results from experiments showed that the 
HMOEA is effective in solving multi-objective and multi-modal 
combinatorial optimization problems. Xia and Wu [4] similarly 
proposed a hybrid multi-objective algorithm by combining the 
PSO algorithm for its explorative power, and simulated 
annealing (SA) for its exploitations to solve the flexible job-shop 
scheduling problem (FJSP). A hybrid multi-objective algorithm 
based on the features of a biological immune system (IS) and 
bacterial optimization (BO) to find Pareto optimal solutions for 
flow shop scheduling problem was proposed by Tavakkoli-
Moghaddam et al. [5]. This particular algorithm uses the clonal 
selection principle in IS with highest affinity antibodies and 
criterion distinguishing between antigens and antibodies in BO 
for the Pareto dominance relationship among solutions. Also, 
Karthikeyan et al. [6] proposed a hybrid discrete firefly 
algorithm (HDFA) to solve the multi-objective FJSP problem. 
In this proposal, the discrete firefly algorithm and a local search 
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(LS) method were combined to enhance the searching accuracy 
and information sharing among fireflies.  

Another work by Wang et al. [7] proposed a hybrid 
evolutionary algorithm that is based on different crossover and 
mutation strategies along with adaptive constrained-handling 
technique to deal with numerical and engineering constrained 
optimization problems. A hybrid and adaptive co-evolutionary 
optimization method that can efficiently solve a wide range of 
multi-objective optimization problems was proposed by 
Zăvoianu et al. [8]. This particular approach combines Pareto-
based selection for survival, differential evolution’s crossover 
and mutation operators, and decomposition-based strategies. An 
ensemble strategy was recently proposed to benefit from both 
the availability of diverse approaches and to overcome 
difficulties associated with fine tuning associated parameters.  
Such work includes ensemble of the ε parameter values and an 
ensemble of external archives in a multi-objective PSO 
algorithm [9], constraint handling methods to tackle constrained 
multi-objective optimization problems [10], and the various 
neighborhood sizes in multi-objective evolutionary algorithm 
based on decomposition (MOEA/D) with online self-adaptation 
[11]. Other notable hybridization of selection mechanisms 
include selection hyper-heuristics (mixing selection, mutation 
operators and accepting strategies) [21] and bi-criterion 
evolution (hybridization of Pareto-based and non-Pareto-based 
selection criterions) [22]. 

A hybrid population-based algorithm, called PSOGSA, was 
proposed by Mirjalili and Hashim [12] by combining Particle 
Swarm Optimization (PSO) and the Gravitational Search 
Algorithm (GSA). The aim of the algorithm was the integration 
of the exploitation ability of PSO with the exploration ability of 
GSA to synthesize the strengths of both algorithms. Also, El-
hossini et al. [13] proposed three hybrid algorithms that are 
based on the strength Pareto evolutionary algorithm 2 (SPEA2) 
and the PSO to solve multi-objective optimization problems. 
These algorithms use strength Pareto fitness assignment to 
maintain an external archive. The three algorithms are 
developed by alternating the evolutionary and PSO processes in 
a different order. Results showed that the proposed hybrid PSO 
algorithms have a comparable performance to SPEA2. 
Furthermore, Tang and Wang [14] proposed a novel hybrid 
multi-objective evolutionary algorithm (HMOEA) for real-
valued multi-objective problems via incorporating the concepts 
of personal best and global best in PSO and evolutionary 
operators (i.e., multiple crossovers); it was for improving the 
robustness of evolutionary algorithms to solve different kinds of 
optimization problems.  

Recently, Ibrahim et al. proposed hybridization of 
population-based metaheuristic algorithms called fusion of non-
dominated fronts using reference points (FNFR) [15] to extract 
well-distributed solutions from a large set of non-dominated 
solutions collected during several runs of multiple algorithms.. 
Inspired from the FNFR framework and in the effort of 
developing a powerful general-purpose hybridization 
framework, we propose a novel hybridization of population-
based multi- or many-objective optimization algorithms called 
hybrid many-Objective algorithm using Fusion of solutions 
from multiple algorithms (Fusion) to gain the combined benefits 
of several multi-objective optimization algorithms (MOOAs) 
and reduce the challenge of choosing one optimization 

algorithm to solve complex problems. The main difference 
between the proposed framework and the FNFR is that, in 
FNFR, the fusion process occurs after the optimization process, 
whereas in the proposed framework, the hybridization and 
fusion of solutions is done during the optimization process. 
Unlike other hybridization methods discussed above [3 - 15], the 
main features of the proposed framework are as follows:   

1) The Fusion framework allows users to select and include 
multiple optimization algorithms in the search process with 
highest flexibility 

2) The parallel execution of multiple algorithm using the same 
population to determine best performing algorithms at every 
stage of the search process. 

3) Since reference-point-based selection mechanism is utilized, 
Fusion maintains the diversity of solutions. 

4) In the serial execution stage of the Fusion framework, best 
performing algorithms are given the chance to run 
independently and continue generating improved candidate 
solutions.    

5) In the Fusion framework, several algorithms can be used 
without the need of extra parameter tuning so several 
optimization algorithms can be hybridized with minimal 
effort. 
The rest of the paper is organized as follows. Section II 

outlines the Fusion framework in detail. Section III presents 
experimental studies conducted to verify the efficacy of the 
proposed framework on 3- to 10-objective benchmark test 
problems. Concluding remarks are provided in Section IV.  

II. PROPOSED FUSION FRAMEWORK 

In this section, we present a novel hybridization technique 
called hybridization of multi- and many-objective optimization 
algorithms framework called Hybrid Many-Objective 
Algorithm Using Fusion of Solutions from Several Many-
Objective Algorithms (Fusion) to gain the combined benefits of 
several algorithms and reducing the challenge of choosing one 
optimization algorithm to solve complex problems. The Fusion 
framework contains four modules and Fig. 1 shows an overall 
flowchart of the framework.  

A. Module 1: Initialization and Parameter Settings 

In this module, multi-objective algorithms (Alg1, Alg2,…,Algn) 

with distinctive characteristics, which are suitable for solving 

the problem, are selected. For example, one can select an 

algorithm known for its diversity-preserving mechanism, and 

another known for its convergence ability, and another which is 

capable of maintaining good spread. Next, all parameters’ 

settings required by each algorithm are set. Finally, the initial 

�  random individuals for population ����  are created and 

objective functions, constraint functions and overall constraint 

violation for each solution are evaluated. 

B. Module 2: Parallel Execution of all Algorithms 

In this module, each algorithm involved in the Fusion 
framework is provided with the current population ����  and in 

turn generates a new population ����	
� , where � = 1…� , 

according to ����′�  procedures. Thereafter, each algorithm 

combines ��  and ���	
  and selects the best �  candidate 

solutions according to their selection mechanism. If any  

2373



 

 

Fig. 1. Flowchart illustrating hybridization of MOEAs using the fusion of solutions of several MOEAs, where �� is the number of function calls 

and ��� is the maximum number of function calls .  

algorithm involved in this framework employs an external 
archive, then the archive is consolidated based on the new 
candidate solution generated by the algorithm. Moreover, if the 
total number of function calls exceed the maximum number of 
function calls during parallel execution of algorithms, the 
process terminates and ��  is reported. It is worth mentioning 
here that since all algorithms are supplied with the same 
population to generate and select new population based on their 
mechanism, promising algorithms can adaptively be selected 
and used to generate improved candidate solutions in subsequent 

stages of the search process. In Module 3, we describe the steps 
used in identifying the best performing algorithms in each stage.  

C. Module 3: Fusion and Selection of Best Solutions 

In this module, first solutions obtained by ����to ���� are 

combined ����	
 ∪ ���	
 …���	�� and sorted according to 

different non-domination levels (��, � ,..). Second, all the 
solutions from each domination level are accepted one-by-one 
to construct elite population (�!"#) until the size is equal to �. 
If the number of candidate solutions in the last domination level 
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to be entered is greater than �, then the remaining solutions are 
selected based on NSGA-III’s [16, 17]; which is a reference-
point-based non-dominated sorting selection mechanism. Once 
the new population �!"#  reaches	�, then, the contribution of 
each algorithm is evaluated by counting the number of solutions 
in �!"# which came from each algorithm. By this way, the most 
suitable algorithm at the current search stage is identified. As a 
result: 1) well-distributed set of solutions at the current stage of 
the search process are selected, and 2) the contribution of each 
algorithm at the current stage are determined. 

D. Module 4: Adaptive Serial Execution 

After determining the contribution of each algorithm, we 
need to select best performing algorithm to run for the next � 
iterations, where � is the number of algorithms involved in the 
Fusion framework. This way a higher chance is given to those 
algorithms performing well in the current stage to continue the 
search process independently in hopes that they generate 
promising candidate solutions during subsequent generations. In 
this module, we utilize a roulette wheel-based selection 
mechanism according to each algorithm’s contribution count. 
Then, the selected algorithm is given the chance to generate 
current population ���	
  from the population �!"#. This current 

population is in turn combined with �!"# ; �  candidate 
solutions are then selected based on the algorithm’s procedures 
and rules. This process is repeated �  times so that highly 
performing algorithms have greater chance to be selected and to 
generate improved candidate solutions. Once this step is done, 
modules 2 to 4 are repeated until the termination criteria is met. 

 

Fig. 2. Two-objective version of the C1-DTLZ3 problem [17].  

 

Fig. 3. Two-objective version of the C3-DTLZ4 problem [17]. 

III. EXPERIMENTAL SETUP AND RESULTS 

In this section, we present the algorithms used in the fusion 
hybridization framework, parameter settings, and simulation 
results on 3- to 10- objective benchmark test problems. 

A. Utilized Algorithms  

In order to assess the search capability of the proposed 
Fusion framework, we have utilized three MOOAs that have 
considerable differences in their fitness assignment and diversity 
mechanism to gain the combined benefits of these algorithms 
during the search process. These MOOAs are: the Generalized 
Differential Evolution Generation 3 (GDE3) [18], Speed-
constrained Multi-objective Particle Swarm Optimization 
(SMPSO) [19], and the Strength Pareto Evolutionary Algorithm 
2 (SPEA2) [20]. GDE3 uses a growing population and non-
dominated sorting with pruning of non-dominated solutions to 
decrease the population size at the end of each generation. This 
mechanism improves the diversity of obtained solutions. On the 
other hand, since SMPSO mimics the social behavior of birds 
flocking to find food, particles move in the search space in a 
cooperative manner where movements are performed by the 
velocity operator. The velocity operator is guided by a local and 
a social behaviour of swarm. SPEA2 maintains an external 
archive according to each individual’s strength by counting the 
number of individuals that dominate it as well as the number of 
individuals by which it is dominated. Moreover, SPEA2 uses a 
nearest neighbor density estimation method to guide the search 
process efficiently and it preserves boundary solutions. All these 
three algorithms are well-known and commonly used ones.  

Since our method uses structured reference points similar to 
the NSGA-III algorithm to maintain the distribution of solutions 
during the search process, we compare our proposed method 
with the NSGA-III algorithm. 

B. Test Problems 

In order to test the quality of the proposed algorithm, we 
have used five unconstrained and four constrained many-
objective benchmark test problems. The first sets of these test 
problems are the DTLZ (DTLZ1 – DTLZ4, Convex DTLZ2) 
family of test problems. The number of variables for these test 
problems are ( � % 	&	 ' 	1 ), where �  is the number of 
objectives and &	 = 	5 for DTLZ1, while &	 = 	10 for DTLZ2, 
DTLZ3, DTLZ4, and Convex DTLZ2. The corresponding 
Pareto-optimal fronts lie in *� ∈ ,0, 0.5. for the DTLZ1 problem 
and in *� ∈ ,0, 1. for other DTLZ problems. The summary of the 
DTLZ problem characteristics is shown in Table I. 

The second set of test problems utilized in this study are the 
four constrained versions of the DTLZ family test problems: 
Type-1 and Type-3. The Type-1 (C1-DTLZ1 and C2-DTLZ3) 
constrained problems contain the original DTLZ1 and DTLZ3 
test problems. However, two constraints are added to create a 
barrier in approaching the original Pareto-optimal front. The C1-
DTLZ1 test problem has a narrow feasible region surrounded by 
the infeasible region and this introduces a minor difficulty for 
optimizers to converge to the true Pareto-optimal front. The C1-
DTLZ3 introduces a band of infeasible region adjacent to the 
Pareto-optimal front. Therefore, this creates the highest level of 
difficulty for optimizers to converge to the true Pareto-optimal 
front as they need to penetrate the band of the infeasible region 
when they travel from feasible to infeasible then to feasible 
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region.  The summary of the Type-1 problem characteristics is 
shown in Table I. Fig. 2 illustrates the feasible and the Pareto-
optimal front of two-objective C1-DTLZ3 problems.  

TABLE I.  BENCHMARK TEST PROBLEMS 

Problem Characteristics 

DTLZ1 Unconstrained, linear 

DTLZ2 Unconstrained, concave 

Convex DTLZ2 Unconstrained, convex 

DTLZ3 Unconstrained, concave, multimodal 

DTLZ4 Unconstrained, concave, biased 

C1-DTLZ1 Constrained, linear, has barrier created by constraints 

C1-DTLZ3 
Constrained, concave, multimodal, has large barrier 

created by constraints 

C3-DTLZ1 
Constrained, linear, the Pareto-optimal front moved to 

the added constraint surface 

C3-DTLZ4 
Constrained, concave, biased, the Pareto-optimal front 

moved to the added constraint surface 

TABLE II.  GDE3, SMPSO, SPEA2, AND NSGA-III PARAMETER 

SETTINGS. � IS THE NUMBER OF VARIABLES AND |�| IS THE POPULATION SIZE 

GDE3 

Mutation probability (�) 0.1 

Crossover probability (��) 0.5 

SMPSO 

Archive size |�| 
Polynomial mutation (01� 1/� 

Mutation Distribution Index	�31� 20 

SPEA2 

Archive size |�| 
SBX probability (04� 0.9 

Polynomial mutation (01� 1/� 

Crossover Distribution Index	�34� 20 

Mutation Distribution Index	�31� 20 

NSGA-III 

SBX probability (04� 1.0 

Polynomial mutation (01� 1/� 

Crossover Distribution Index	�34� 30 

Mutation Distribution Index	�31� 20 

TABLE III.  NUMBER OF REFERENCE POINTS AND POPULATION SIZES 

USED IN NSGA-III AND ELITENSGA-III ALGORITHMS. 

Number of 

Objectives (M) 

Divisions Reference 

Points(H) 

Population 

Size (N) Outer Inner 

3 12 0 91 92 

5 6 0 210 212 

8 3 2 156 156 

10 3 2 275 276 

 
 The Type-3 (C3-DTLZ1 and C3-DTLZ4) constrained 

problems contain the original DTZL1 and DTLZ4 test problems. 
However, � constraints are added to original problems so that 
the original Pareto-optimal front is no longer optimal. Instead, 
the new Pareto-optimal front is created by portions of constraint 
surfaces. These problems are deigned to assess the optimizers’ 
ability to stay on the newly created Pareto-optimal surface. The 
summary of the Type-3 problem characteristics is shown in 
Table I. Fig. 3 illustrates the feasible and the Pareto-optimal 
front of two-objective C3-DTLZ4 problems. 

C. Parameter and Experimental Settings 

The GDE3 algorithm has two control parameters:  mutation 
amplification factor ��� and crossover rate ����. The SMPSO 
algorithm has three parameters: archive size, polynomial 
mutation �01� , and mutation distribution index 	�31� . The 
NSGA-III algorithm has four control parameters:  SBX 
probability, polynomial mutation, crossover distribution index, 
and mutation distribution index. In addition to the NSGA-III 
control parameters, SPEA2 has archive size parameter. In order 
to maintain a consistent and fair comparison, the parameter 
settings for all algorithms including the Fusion framework are 
kept the same as the original studies of each algorithm. Table II 
presents parameter settings used by GDE3, SMPSO, SPEA2, 
and NSGA-III algorithms. Furthermore, since the Fusion 
framework as well as the NSGA-III algorithm require 
predetermined reference points to maintain the diversity of 
solutions, we have used the same setting reported in the original 
NSGA-III studies [16, 17]. Table III shows the number of 
reference points (5), the population size (�), and the number of 
inner and outer divisions used for different dimensions of test 
problems. 

To evaluate the performance of the proposed algorithm, we 
have used the inverse generational distance (IGD) metric, which 
is capable of measuring the convergence and the diversity of the 
obtained Pareto-optimal solutions at the same time. The IGD 
measure has been predominantly used to evaluate the 
performance of evolutionary many-objective problems [16, 17, 
19]. The IGD metric measures the distances between each 
solution composing the Pareto-optimal front and the obtained 
solution. The IGD metric is defined as follow:  

678 = 	9∑ ;
<�
=>
� ,            

where � refers to the number of solutions in the Pareto-optimal 
front, and ?�  refer to the Euclidean distance (measured in 
objective space) between each point of the Pareto-optimal front 
(reference Pareto front) and the nearest member of obtained 
solution. In this study, the reference Pareto front is constructed 
by joining all results of all the executions and then selecting the 
non-dominated solutions. Furthermore, all algorithms were 
executed 20 times independently and the best, the worst, the 
median, and the average results of each algorithm is recorded. 
Additionally, the Wilcoxon’s signed rank statistical test is 
conducted at a 5% significance level in order to evaluate the 
statistical significance of obtained results. 

D. Experimental Results and Discussion 

To evaluate the performance of the proposed algorithm, we 
have conducted two sets of experiments on constrained and 
unconstrained DTLZ family test problems ccontaining three- to 
ten objectives. The first experiment investigates the 
performance of the proposed Fusion framework on 
unconstrained test problems with varying Pareto-optimal front 
shapes.  The second experiment investigates how the proposed 
framework copes with constrained problems containing barriers 
in approaching the Pareto-optimal front and its ability tackle 
problems with their Pareto-optimal surface is created by 
portions of added constrained surface.  
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(a) Fusion (b) GDE3 (c) SPEA2 

  

 (d) SMPSO (e) NSGA-III  

Fig. 4. The trade-off plots of obtained solutions by Fusion, GDE3, SPEA2, SMPSO and NSGA-III algorithms for three-objective DTLZ3 test problem.   

(a) Fusion (b) GDE3 (c) SPEA2 

  

 (d) SMPSO (e) NSGA-III  

Fig. 5. The trade-off plots of obtained solutions by Fusion, GDE3, SPEA2, SMPSO and NSGA-III algorithms for three-objective C1-DTLZ3 test problem. 
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TABLE IV.  BEST, MEDIAN, WORST, AND AVERAGE IGD VALUES FOR 

FUSION, GDE3, SPEA2, SMPSO AND NSGA-III ON M-OBJECTIVE DTLZ1, 
DTLZ3, AND DTLZ4 PROBLEMS. BEST PERFORMED ALGORITHM IS SHOWN IN 

DARK GRAY AND SECOND BEST IS SHOWN LIGHT GRAY. * INDICATES A 

SIGNIFICANCE LEVEL OF 0.05 BETWEEN THE TOP TWO ALGORITHMS. 

Problem M MFC Fusion GDE3 SPEA2 SMPSO NSGA-III 

DTLZ1 
 

3 

 

250 x 92 

 

4.99E-04 8.01E-04 7.14E-04 9.08E-04 5.14E-04 

5.02E-04 8.31E-04 8.80E-04 9.89E-04 6.82E-04 

5.13E-04 8.64E-03 2.18E-03 1.10E-03 8.64E-03 

5.03E-04* 1.62E-03 1.02E-03 9.91E-04 1.17E-03 

5 

 

450 x 212 

 

6.36E-04 1.14E-03 1.67E-01 2.08E-03 6.39E-04 

6.42E-04 1.16E-03 4.23E-01 2.26E-03 6.89E-04 

6.55E-04 1.22E-03 5.84E-01 2.70E-03 1.25E-03 

6.43E-04* 1.17E-03 4.00E-01 2.32E-03 7.71E-04 

8 

 

700 x 156 

 

1.32E-03 5.72E-03 1.76E+00 5.56E-03 1.23E-03 

1.36E-03 6.72E-03 4.06E+00 8.55E-03 1.56E-03 

1.52E-03 9.49E-03 5.99E+00 2.04E-01 2.46E-03 

1.37E-03* 6.81E-03 4.07E+00 2.24E-02 1.69E-03 

10 

 

1000 x 276 

 

9.71E-04 5.24E-03 2.20E+00 4.66E-03 8.21E-04 

1.05E-03 5.90E-03 3.53E+00 9.75E-03 9.68E-04 

1.23E-03 7.57E-03 4.36E+00 1.70E-01 1.81E-03 

1.06E-03 6.00E-03 3.40E+00 2.81E-02 1.11E-03 

DTLZ3 

 

3 

 

250 x 92 

 

3.47E-04 1.71E-03 5.03E-02 1.03E-03 7.95E-03 

5.18E-04 1.77E-03 1.91E-01 1.45E-03 5.09E-02 

6.83E-04 3.47E-02 3.06E-01 7.75E-03 1.55E-01 

4.95E-04* 7.05E-03 1.19E-01 3.13E-03 5.14E-02 

5 

 

450 x 212 

 

8.25E-04 9.13E-04 1.11E-02 2.36E-03 8.39E-04 

8.34E-04 9.72E-04 3.07E-02 3.29E-03 1.08E-03 

8.49E-04 1.02E-03 5.42E-02 4.18E-03 1.61E-03 

8.34E-04* 9.69E-04 3.06E-02 3.31E-03 1.10E-03 

8 

 

700 x 156 

 

1.19E-03 4.94E-03 2.47E-02 7.26E-03 1.81E-03 

1.54E-03 7.01E-03 4.02E-02 9.28E-03 1.88E-03 

1.80E-03 8.81E-03 2.86E-01 9.38E-03 4.04E-03 

1.55E-03* 7.11E-03 7.18E-02 9.09E-03 2.10E-03 

10 

 

1000 x 276 

 

1.10E-03 4.39E-03 1.54E-02 3.87E-03 1.68E-03 

1.63E-03 5.40E-03 2.69E-02 5.65E-03 1.71E-03 

2.14E-03 5.53E-03 2.20E-01 5.69E-03 1.74E-03 

1.61E-03 5.23E-03 4.10E-02 5.46E-03 1.71E-03 

DTLZ4 

 

3 

 

400 x 92 

 

5.58E-04 8.90E-04 7.32E-04 9.91E-04 5.57E-04 

5.60E-04 9.80E-04 7.59E-04 1.04E-03 5.61E-04 

5.63E-04 8.42E-03 8.42E-03 1.54E-03 1.27E-02 

5.60E-04* 1.35E-03 3.36E-03 1.08E-03 1.17E-03 

5 

 

700 x 212 

 

9.15E-04 1.42E-03 1.79E-03 1.77E-03 9.12E-04 

9.19E-04 1.46E-03 2.00E-03 2.29E-03 9.15E-04 

1.10E-03 1.50E-03 3.43E-03 2.67E-03 9.23E-04 

9.28E-04 1.46E-03 2.08E-03 2.30E-03 9.16E-04 

8 

 

1100 x 156 

 

1.89E-03 2.65E-03 8.97E-03 3.39E-03 1.86E-03 

1.91E-03 2.80E-03 9.19E-03 3.67E-03 1.89E-03 

1.94E-03 2.95E-03 9.38E-03 4.11E-03 2.02E-03 

1.91E-03 2.81E-03 9.18E-03 3.69E-03 1.90E-03 

10 

 

1500 x 276 

 

1.72E-03 2.09E-03 6.24E-03 2.30E-03 1.82E-03 

1.83E-03 2.23E-03 6.33E-03 2.54E-03 1.83E-03 

1.85E-03 2.36E-03 6.42E-03 2.85E-03 1.89E-03 

1.81E-03* 2.24E-03 6.33E-03 2.58E-03 1.84E-03 

Number of statistically 
significant wins 

8 0 0 0 0 

 

1) Unconstrained Problems  

The first experiment investigates the performance of Fusion 

on problems with linear or concave Pareto- optimal fronts for 

three- to ten- objectives DTLZ1, DTLZ3 and DTLZ4 problems. 

Fig. 4 shows the obtained Pareto fronts by Fusion, GDE3, 

SPEA2, SMPSO, and NSGA-III for the three-objective DTLZ3 

test problem after 250 generations (250 * 92 function calls). It 

is evident from these diagrams that Fusion is able to find well-

distributed solutions on the Pareto-optimal front. Table IV 

provides the best, median, worst, and average IGD values of all 

algorithms for the above-mentioned test problems. From this, 

we can see that the performance of Fusion is significantly better 

than not only the algorithms involved in the hybridization 

process but also NSGA-III for almost all experiments 

conducted in this section. 

TABLE V.  BEST, MEDIAN, WORST, AND AVERAGE IGD VALUES FOR 

FUSION, GDE3, SPEA2, SMPSO AND NSGA-III ON M-OBJECTIVE DTLZ2 

AND CONVEX DTLZ2 PROBLEMS. BEST PERFORMED ALGORITHM IS SHOWN 

IN DARK GRAY AND SECOND BEST IS SHOWN LIGHT GRAY. * INDICATES A 

SIGNIFICANCE LEVEL OF 0.05 BETWEEN THE TOP TWO ALGORITHMS. 

Problem M MFC Fusion GDE3 SPEA2 SMPSO NSGA-III 

D
T

L
Z

2
 

 

3 250 x 92 

6.31E-04 9.23E-04 7.07E-04 1.07E-03 6.28E-04 

6.36E-04 9.85E-04 7.98E-04 1.13E-03 6.34E-04 

6.43E-04 1.05E-03 8.27E-04 1.24E-03 6.56E-04 

6.36E-04 9.87E-04 8.00E-04 1.13E-03 6.36E-04 

5 450 x 212 

9.90E-04 1.41E-03 1.64E-03 2.43E-03 9.83E-04 

9.93E-04 1.44E-03 1.78E-03 2.71E-03 9.86E-04 

1.00E-03 1.51E-03 1.92E-03 2.91E-03 1.02E-03 

9.94E-04 1.45E-03 1.79E-03 2.68E-03 9.89E-04* 

8 700 x 156 

1.76E-03 3.92E-03 1.09E-02 5.30E-03 1.80E-03 

1.91E-03 4.23E-03 1.11E-02 5.81E-03 1.85E-03 

1.98E-03 4.86E-03 1.14E-02 6.57E-03 2.01E-03 

1.90E-03 4.25E-03 1.11E-02 5.80E-03 1.86E-03 

10 1000 x 276 

1.44E-03 4.49E-03 8.27E-03 4.92E-03 1.49E-03 

1.55E-03 4.71E-03 8.40E-03 5.69E-03 1.52E-03 

1.70E-03 4.88E-03 8.64E-03 6.22E-03 1.70E-03 

1.55E-03 4.69E-03 8.41E-03 5.63E-03 1.55E-03 

C
o
n
v

ex
 D

T
L

Z
2
 

 

3 300 x 92 

4.77E-04 6.18E-04 4.81E-04 7.93E-04 4.94E-04 

4.98E-04 6.78E-04 5.00E-04 8.46E-04 5.55E-04 

5.11E-04 7.65E-04 5.34E-04 9.64E-04 6.07E-04 

4.96E-04* 6.89E-04 5.05E-04 8.64E-04 5.55E-04 

5 500 x 212 

4.11E-04 5.23E-04 8.00E-03 1.27E-03 4.49E-04 

4.33E-04 5.49E-04 1.88E-02 1.61E-03 5.13E-04 

4.96E-04 5.67E-04 2.34E-02 2.13E-03 7.45E-04 

4.36E-04* 5.50E-04 1.78E-02 1.59E-03 5.35E-04 

8 800 x 156 

8.14E-04 1.10E-03 3.28E-03 1.54E-03 1.49E-03 

1.34E-03 1.16E-03 3.72E-03 2.19E-03 1.50E-03 

1.47E-03 1.28E-03 3.90E-03 3.02E-03 1.52E-03 

1.31E-03 1.16E-03* 3.69E-03 2.27E-03 1.50E-03 

10 1000 x 276 

1.26E-03 5.68E-04 1.59E-03 7.75E-04 1.96E-03 

1.71E-03 6.41E-04 1.85E-03 1.18E-03 1.97E-03 

1.96E-03 7.83E-04 2.02E-03 1.55E-03 2.00E-03 

1.69E-03 6.53E-04* 1.85E-03 1.16E-03 1.97E-03 

Number of statistically 
significant wins 

2 2 0 0 1 

 

The second experiment investigates the performance of 

Fusion on DTLZ2 and Convex DTLZ2 for three- to ten-

objectives problems. From Table V we see that even though 

Fusion’s IGD values are not statistically significant than 

NSGA-III, they are significantly better than algorithms 

involved in the hybridization process for almost all instances of 

the test problems. From the above two experiments, we see that 

none of the algorithms involved in Fusion experiment are not 

able to find well-distributed and well-converged solutions 

consistently. However, since Fusion uses predefined structured 

reference points to guide and preserve the diversity of obtained 

solutions and adaptively select best performing algorithms in 

every stage of the search process, it consistently able to find 

well-distributed solutions that may not be possible using one 

optimization algorithm. 

.
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(a) Fusion (b) GDE3 (c) SPEA2 

  

 (d) SMPSO (e) NSGA-III  

Fig. 6. The trade-off plots of obtained solutions by Fusion, GDE3, SPEA2, SMPSO and NSGA-III algorithms for three-objective C3-DTLZ4 test problem.   

(a) Fusion (b) GDE3 (c) SPEA2 

  

 (d) SMPSO (e) NSGA-III  

Fig. 7. Value path comparison of obtained solutions by Fusion, GDE3, SPEA2, SMPSO and NSGA-III algorithms for ten-objective C3-DTLZ1 test problem.  
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TABLE VI.  BEST, MEDIAN, WORST, AND AVERAGE IGD VALUES FOR 

FUSION, GDE3, SPEA2, SMPSO AND NSGA-III ON M-OBJECTIVE CONVEX 

C1-DTLZ1, C1-DTLZ3, C3-DTLZ1, AND C3-DTLZ4 PROBLEMS. BEST 

PERFORMED ALGORITHM IS SHOWN IN DARK GRAY AND SECOND BEST IS 

SHOWN LIGHT GRAY. * INDICATES A SIGNIFICANCE LEVEL OF 0.05 BETWEEN 

THE TOP TWO ALGORITHMS. 

Problem M NFC Fusion GDE3 SPEA2 SMPSO NSGA-III 

C
1

-D
T

L
Z

1
 

3 250 x 92 

4.15E-04 6.22E-04 4.93E-04 6.80E-04 4.16E-04 

4.17E-04 6.71E-04 5.80E-04 7.52E-04 6.30E-04 

4.24E-04 1.07E-02 8.48E-04 2.53E-03 1.03E-02 

4.17E-04* 4.47E-03 6.07E-04 8.54E-04 2.29E-03 

5 450 x 212 

5.23E-04 8.19E-04 6.27E-04 9.98E-04 5.10E-04 

5.26E-04 8.52E-04 6.56E-04 1.10E-03 5.17E-04 

5.29E-04 6.85E-03 7.58E-04 1.34E-03 5.24E-04 

5.26E-04 2.35E-03 6.68E-04 1.11E-03 5.17E-04* 

8 700 x 156 

1.09E-03 1.74E-03 1.39E-03 2.17E-03 1.06E-03 

1.10E-03 1.78E-03 1.44E-03 2.41E-03 1.07E-03 

1.10E-03 1.70E-02 1.53E-03 2.59E-03 1.09E-03 

1.10E-03 4.15E-03 1.44E-03 2.40E-03 1.07E-03* 

10 1000 x 276 

8.20E-04 1.36E-03 1.08E-03 1.64E-03 8.11E-04 

8.23E-04 1.37E-03 1.11E-03 1.84E-03 8.15E-04 

8.27E-04 1.27E-02 1.15E-03 2.10E-03 8.20E-04 

8.23E-04 2.44E-03 1.11E-03 1.85E-03 8.15E-04* 

C
1

-D
T

L
Z

3
 

3 300 x 92 

7.56E-04 1.43E-03 1.48E-01 1.46E-03 1.48E-01 

7.62E-04 4.84E-02 1.50E-01 1.76E-03 1.48E-01 

7.67E-04 1.48E-01 2.01E-01 9.25E-03 1.55E-01 

7.62E-04* 6.97E-02 1.53E-01 3.43E-03 1.49E-01 

5 500 x 212 

9.06E-04 1.85E-03 4.37E-01 3.85E-03 5.13E-02 

9.16E-04 5.17E-02 8.94E-01 5.12E-03 5.18E-02 

9.28E-04 5.19E-02 1.56E+00 1.56E-01 5.35E-02 

9.16E-04* 3.49E-02 8.78E-01 1.30E-02 5.19E-02 

8 800 x 156 

1.58E-03 6.58E-03 1.53E-02 9.29E-03 4.62E-03 

2.32E-03 8.94E-03 6.91E-02 1.06E-02 6.26E-03 

2.90E-03 1.03E-02 8.37E-01 1.08E-02 7.14E-03 

2.23E-03* 8.78E-03 1.27E-01 1.05E-02 6.17E-03 

10 1000 x 276 

2.89E-03 4.42E-03 2.66E-02 4.66E-03 6.48E-03 

4.10E-03 5.49E-03 3.68E-02 5.20E-03 7.06E-03 

5.85E-03 5.89E-03 1.96E-01 5.39E-03 7.18E-03 

4.13E-03* 5.39E-03 5.69E-02 5.16E-03 6.97E-03 

C
3

-D
T

L
Z

1
 

3 400 x 92 

5.84E-03 3.20E-03 2.65E-01 5.38E-03 6.84E-03 

7.23E-03 3.61E-03 7.99E-01 1.17E-02 8.22E-03 

8.03E-03 5.33E-03 1.31E+00 1.35E-01 9.26E-03 

6.98E-03 3.70E-03* 8.01E-01 2.19E-02 8.26E-03 

5 700 x 212 

8.92E-04 1.94E-03 2.23E-01 2.61E-03 1.00E-03 

9.14E-04 2.29E-03 3.52E-01 3.21E-03 1.25E-03 

1.13E-03 2.44E-03 4.97E-01 4.35E-03 1.54E-03 

9.23E-04* 2.25E-03 3.63E-01 3.25E-03 1.25E-03 

8 1100 x 156 

1.49E-03 5.89E-03 1.32E+00 5.65E-03 1.76E-03 

1.64E-03 7.95E-03 2.33E+00 3.31E-02 2.15E-03 

1.83E-03 9.37E-03 3.09E+00 1.84E-01 3.82E-03 

1.64E-03* 7.79E-03 2.25E+00 5.30E-02 2.24E-03 

10 1500 x 276 

1.21E-03 4.28E-03 1.17E+00 4.47E-03 1.19E-03 

1.31E-03 6.49E-03 1.79E+00 6.23E-02 1.53E-03 

1.40E-03 7.86E-03 2.22E+00 1.39E-01 2.77E-03 

1.30E-03* 6.54E-03 1.78E+00 6.18E-02 1.66E-03 

C
3

-D
T

L
Z

4
 

3 400 x 92 

5.74E-04 9.28E-04 7.34E-04 1.05E-03 5.78E-04 

5.89E-04 9.57E-04 7.97E-04 1.17E-03 5.99E-04 

6.23E-04 1.03E-03 7.65E-03 1.99E-03 6.67E-04 

5.90E-04* 9.66E-04 2.15E-03 1.31E-03 6.09E-04 

5 700 x 212 

7.71E-04 1.48E-03 1.74E-03 1.82E-03 7.68E-04 

7.80E-04 1.56E-03 1.87E-03 2.05E-03 7.87E-04 

8.03E-04 1.67E-03 2.08E-03 2.18E-03 8.41E-04 

7.82E-04 1.56E-03 1.87E-03 2.03E-03 7.90E-04 

8 1100 x 156 

1.83E-03 3.19E-03 7.67E-03 3.42E-03 1.80E-03 

1.85E-03 3.34E-03 7.96E-03 3.58E-03 1.83E-03 

1.88E-03 3.56E-03 8.16E-03 3.96E-03 1.87E-03 

1.85E-03 3.34E-03 7.91E-03 3.59E-03 1.83E-03* 

10 1500 x 276 

1.50E-03 2.76E-03 5.89E-03 2.69E-03 1.50E-03 

1.55E-03 2.96E-03 5.98E-03 2.87E-03 1.53E-03 

1.56E-03 3.08E-03 6.13E-03 3.12E-03 1.58E-03 

1.55E-03 2.95E-03 5.99E-03 2.87E-03 1.54E-03 

Number of statistically 

significant wins 
9 1 0 0 4 

 
 

2) Unconstrained Problems  

The first experiment investigates the performance of Fusion 

on problems with linear or concave Pareto-optimal fronts for 

three- to ten- objectives DTLZ1, DTLZ3 and DTLZ4 problems. 

Fig. 4 shows the obtained Pareto fronts by Fusion, GDE3, 

SPEA2, SMPSO, and NSGA-III for the three-objective DTLZ3 

test problem after 250 generations (250 * 92 function calls). It 

is evident from these diagrams that Fusion is able to find well-

distributed solutions on the Pareto-optimal front. Table IV 

provides the best, median, worst, and average IGD values of all 

algorithms for the above-mentioned test problems. From this 

we can see that the performance of Fusion is significantly better 

than not only the algorithms involved in the hybridization 

process but also NSGA-III for almost all experiments 

conducted in this section. 

The second experiment investigates the performance of 

Fusion on DTLZ2 and Convex DTLZ2 for three- to ten-

objective problems. From Table V, we see that even though 

Fusion’s IGD values are not statistically significant than 

NSGA-III, they are significantly better than algorithms 

involved in the hybridization process for almost all instances of 

the test problems. From the above two experiments we see that 

none of the algorithms involved in Fusion experiment are able 

to consistently find well-distributed and well-converged 

solutions. However, since Fusion uses predefined structured 

reference points to guide and preserve the diversity of obtained 

solutions and adaptively select best performing algorithms in 

every stage of the search process, it is consistently able to find 

a well-distributed solution which may not be possible using one 

optimization algorithm. 

3) Constrained Problems  
The Type-1 constrained test problems challenge optimizers’ 

ability to penetrate the barrier created by the constraints in order 
to reach the global Pareto-optimal front. Fig. 5 shows obtained 
solutions by the Fusion, GDE3, SPEA2, SMPSO, and NSGA-
III three-objective C1-DTLZ3 test problem after 300 
generations (300 * 92 function calls). From this diagram, we can 
see that only the Fusion method is able to obtain well-distributed 
and converged solutions on the Pareto-optimal surface. 
However, when we look at Fig. 5 (b), (c), and (d), none of the 
algorithms involved in the hybridization process individually are 
able to obtain well-distributed and converged solutions with the 
number of function calls. Furthermore, from Fig. 5 (c) and (e) 
we observe that the SPEA2 and NSGA-III algorithms are not 
only unable to penetrate the barrier created by the constraints of 
the test problem but also failed to find well-distributed on the 
newly created barrier surface. Table VI shows that the proposed 
framework significantly outperformed the three algorithms in 
the hybridization process while showing comparable results 
with NSGA-III on C1-DTLZ1 and significantly better solution 
problems on C1-DTLZ3 with three- to ten- objectives. 

On the other hand, Type-3 constrained problems are 

designed to test the ability of an optimizer to stay on the Pareto-

optimal front created by portions of constraint surface. Fig. 6 

depicts obtained solutions by the Fusion, GDE3, SPEA2, 

SMPSO, and NSGA-III three-objective C3-DTLZ4 test 

problem after 400 generations (400 * 92 function calls). From 
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this figure, we can see that Fusion, SPEA2 and NSGA-III are 

able to obtain comparable distribution of solutions on the 

Pareto-optimal front.  However, from Fig. 6 (b) and (d) we see 

that GDE3 and SMPSO failed to find well-distributed solution 

over	*� ∈ ,0, 2.. In Table VI we see that Fusion outperformed 

every algorithm in almost all instances of C3-DTLZ1 and C3-

DTLZ4 problems in terms of IGD metric, followed by NSGA-

III. Also, from Fig. 7 we see that Fusion is able to obtain well-

distributed solutions for C3-DTLZ1 over *� ∈ ,0, 1. for all ten 

objectives and trade-offs among them. However, Fig. 7 (c) and 

(d) illustrate that SPEA2 and SMPSO individually are not able 

to converge their solution on *� ∈ ,0, 1..  
IV. CONCLUSION 

In this paper, we proposed a novel hybridization of multi-
and many-objective optimization algorithms framework called 
fusion-based hybrid many-objective optimization algorithm; 
which utilizes several many-objective algorithms to gain the 
combined benefits of several algorithms and reduce the 
challenge of choosing one optimization algorithm to solve 
complex problems. In the Fusion framework, several algorithms 
can be used without the need of extra parameter tuning so that 
several optimization algorithms can be hybridized with minimal 
effort. Furthermore, since Fusion uses predefined structured 
reference points to guide and preserve the diversity of obtained 
solutions and adaptively select best performing algorithms in 
every stage of the search process, it can consistently find a well-
distributed solution that may not be possible to find using only 
one optimization algorithm. 

The efficacy of the proposed Fusion framework was 
investigated using three widely used optimization algorithms; 
GDE3, SMPSO, and SPEA2. Experimental results on five 
unconstrained and four constrained benchmark test problems 
with three to ten objectives showed that the Fusion framework 
significantly outperformed all algorithms involved in the 
hybridization process as well as the  NSGA-III algorithm in 
terms of diversity and convergence of obtained solutions. 
Furthermore, the numerical results also show that the proposed 
Fusion framework is able to consistently show good 
performance. In the future, we would like to investigate the 
performance of Fusion in practical many-objective problems. 
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